Weak Del Pezzo Surfaces with Irregularity

نویسنده

  • STEFAN SCHRÖER
چکیده

I construct normal del Pezzo surfaces, and regular weak del Pezzo surfaces as well, with positive irregularity q > 0. This can happen only over nonperfect fields. The surfaces in question are twisted forms of nonnormal del Pezzo surfaces, which were classified by Reid. The twisting is with respect to the flat topology and infinitesimal group scheme actions. The twisted surfaces appear as generic fibers for Fano-Mori contractions on certain threefolds with only canonical singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Del Pezzo with Irregularity

I construct normal del Pezzo surfaces, and regular weak del Pezzo surfaces as well, with positive irregularity q > 0. Such things can happen only over nonperfect fields. The surfaces in question are twisted forms of nonnormal del Pezzo surfaces, which were classified by Reid. The twisting is with respect to the flat topology and infinitesimal group scheme actions. The twisted surfaces appear as...

متن کامل

Weak Approximation for General Degree Two Del Pezzo Surfaces

We address weak approximation for certain del Pezzo surfaces defined over the function field of a curve. We study the rational connectivity of the smooth locus of degree two del Pezzo surfaces with two A1 singularities in order to prove weak approximation for degree two del Pezzo surfaces with square-free discriminant.

متن کامل

Weak Approximation for Low Degree Del Pezzo Surfaces

Let K = Func(C) be the function field of a smooth curve C. For every Del Pezzo surface S/K which is an appropriately generic, weak approximation for S holds at every place of K, i.e., for every closed point c of C. This combines earlier work in (arXiv:0810.2597) with an analysis of weak approximation near boundary points of the parameter spaces for Del Pezzo surfaces of degrees 1 and 2.

متن کامل

Morphisms to Brauer–severi Varieties, with Applications to Del Pezzo Surfaces

We classify morphisms from proper varieties to Brauer– Severi varieties, which generalizes the classical correspondence between morphisms to projective space and globally generated invertible sheaves. As an application, we study del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and recover classical results on rational points, the Hasse principle, and weak approxim...

متن کامل

The Brauer-manin Obstruction on Del Pezzo Surfaces of Degree 2

This paper explores the computation of the Brauer-Manin obstruction on Del Pezzo surfaces of degree 2, with examples coming from the class of “semi-diagonal” Del Pezzo surfaces of degree 2. It is conjectured that the failure of the Hasse principle for a broad class of varieties, including Del Pezzo surfaces, can always be explained by a nontrivial Brauer-Manin obstruction. We provide computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007